

HFA1115/883

High Speed, Low Power, Output Limiting Closed Loop Buffer Amplifier

July 1994

Features

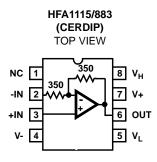
- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- User Programmable Output Voltage Limiting
- User Programmable For Closed-Loop Gains of +1, -1 or +2 Without Use of External Resistors
- Standard Operational Amplifier Pinout
- Fast Overdrive Recovery.....<1ns (Typ)
- Low Supply Current..... 6.9mA (Typ)
- Excellent Gain Accuracy.....0.99V/V (Typ)
- Wide -3dB Bandwidth 225MHz (Typ)
- Fast Slew Rate1135V/μs (Typ)
- High Input Impedance $1M\Omega$ (Typ)
- Excellent Gain Flatness (to 50MHz) ±0.1dB (Typ)

Applications

- Flash A/D Driver
- · Video Switching and Routing
- Pulse and Video Amplifiers
- Wideband Amplifiers
- RF/IF Signal Processing
- Medical Imaging Systems

Description

The HFA1115/883 is a high speed closed loop Buffer featuring both user programmable gain and output limiting. Manufactured in Intersil' proprietary complementary bipolar UHF-1 process, the HFA1115/883 also offers a wide -3dB bandwidth of 225MHz, very fast slew rate, excellent gain flatness and high output current.


This buffer is the ideal choice for high frequency applications requiring output limiting, especially those needing ultra fast overload recovery times. The limiting function allows the designer to set the maximum positive and negative output levels, thereby protecting later stages from damage or input saturation. The HFA1115/883 also allows for voltage gains of +2, +1, and -1, without the use of external resistors. Gain selection is accomplished via connections to the inputs, as described in the "Application Information" text. The result is a more flexible product, fewer part types in inventory, and more efficient use of board space.

Compatibility with existing op amp pinouts provides flexibility to upgrade low gain amplifiers, while decreasing component count. Unlike most buffers, the standard pinout provides an upgrade path should a higher closed loop gain be needed at a future date.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE		
HFA1115MJ/883	-55°C to +125°C	8 Lead CerDIP		

Pinout

File Number 3724

Specifications HFA1115/883

Absolute Maximum Ratings

Thermal Information

Voltage Between V+ and V	12V
Voltage at Either Input Terminal	+ to V-
Output Current (Note 1) Short Circuit Pro	tected
Output Current (50% Duty Cycle, Note 1)	.60mA
Junction Temperature	·175°C
ESD Rating>	2000V
Storage Temperature Range	·150°C
Lead Temperature (Soldering 10s)+	300°C

Thermal Resistance	θ_{JA}	$\theta_{\sf JC}$
CerDIP Package	. 115°C/W	30°C/W
Maximum Package Power Dissipation at	: +75°C	
CerDIP Package		0.87W
Package Power Dissipation Derating Fac	ctor above +75	°C
CerDIP Package		8.7mW/°C
_		

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_{SOURCE} = 0\Omega$, $R_L = 100\Omega$, $V_{OUT} = 0V$, Unless Otherwise Specified.

			GROUP A		LIMITS			
PARAMETERS SYMBOL		CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS	
Output Offset Voltage V _{OS}		V _{CM} = 0V	1	+25°C	-10	10	mV	
			2, 3	+125°C, -55°C	-20	20	mV	
Common Mode	CMRR	$\Delta V_{CM} = \pm 1.8 V$ V+ = 3.2V, V- = -6.8V V+ = 6.8V, V- = -3.2V	1	+25°C	42	-	dB	
Rejection Ratio			2	+125°C	39	-	dB	
		$\Delta V_{CM} = \pm 1.2V$ V+ = 3.8V, V- = -6.2V V+ = 6.2V, V- = -3.8V	3	-55°C	39	-	dB	
Power Supply	PSRRP	$\Delta V_{SUPPLY} = \pm 1.8V$	1	+25°C	45	-	dB	
Rejection Ratio		V+ = 6.8V, V- = -5V V+ = 3.2V, V- = -5V	2	+125°C	42	-	dB	
		ΔV _{SUPPLY} = ±1.2V V+ = 6.2V, V- = -5V V+ = 3.8V, V- = -5V	3	-55°C	42	-	dB	
	PSRRN	ΔV _{SUPPLY} = ±1.8V V+ = 5V, V- = -6.8V V+ = 5V, V- = -3.2V	1	+25°C	45	-	dB	
			2	+125°C	42	-	dB	
		ΔV _{SUPPLY} = ±1.2V V+ = 5V, V- = -6.2V V+ = 5V, V- = -3.8V	3	-55°C	42	-	dB	
Non-Inverting Input (+IN) I _{BSP}		V _{CM} = 0V	1	+25°C	-15	15	μΑ	
Current			2, 3	+125°C, -55°C	-25	25	μΑ	
+IN Current Common Mode Sensitivity	CMS _{IBP}	$\Delta V_{CM} = \pm 1.8V$ V+ = 3.2V, V- = -6.8V V+ = 6.8V, V- = -3.2V	1	+25°C	-	1.25	μA/V	
			2	+125°C	-	2.85	μA/V	
		$\Delta V_{CM} = \pm 1.2V$ V+ = 3.8V, V- = -6.2V V+ = 6.2V, V- = -3.8V	3	-55°C	-	2.85	μA/V	
+IN Resistance	+R _{IN}	Note 2	1	+25°C	800	-	kΩ	
			2, 3	+125°C, -55°C	350	-	kΩ	

Specifications HFA1115/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: V_{SUPPLY} = ± 5 V, A_V = +1, R_{SOURCE} = 0Ω , R_L = 100Ω , V_{OUT} = 0V, Unless Otherwise Specified.

		CONDITIONS		GROUP A SUBGROUPS		LIMITS		
PARAMETERS	SYMBOL				TEMPERATURE	MIN	MAX	UNITS
Gain	A _{VP1}	A _V = +1		1	+25°C	0.98	1.02	V/V
		$V_{IN} = -1V$ to	+1V	2, 3	+125°C, -55°C	0.975	1.025	V/V
	A _{VM1}	A _V = -1			+25°C	-0.98	-1.02	V/V
		$V_{IN} = -1V \text{ to } +1V$		2, 3	+125°C, -55°C	-0.975	-1.025	V/V
	A _{VP2}	$A_V = +2$ $V_{IN} = -1V \text{ to } +1V$		1	+25°C	1.96	2.04	V/V
				2, 3	+125°C, -55°C	1.95	2.05	V/V
Output Voltage Swing	V _{OP100}	A _V = -1	V _{IN} = -3.2V	1	+25°C	3	-	V
		$R_L = 100\Omega$	V _{IN} = -3V	2, 3	+125°C, -55°C	2.8	-	V
	V _{ON100}	A _V = -1	V _{IN} =+3.2V	1	+25°C	-	-3	V
		$R_L = 100\Omega$	V _{IN} = +3V	2, 3	+125°C, -55°C	-	-2.8	V
Output Voltage Swing	V _{OP50}	A _V = -1	V _{IN} = -2.7V	1	+25°C	2.5	-	V
		$R_L = 50\Omega$	V _{IN} = -2.25V	2	+125°C	2.0	-	V
			V _{IN} = -2.25V	3	-55°C	1.4	-	V
	V _{ON50}		V _{IN} = +2.7V	1	+25°C	-	-2.5	V
		$R_L = 50\Omega$	V _{IN} = +2.25V	2	+125°C	-	-2.0	V
			V _{IN} = +2.25V	3	-55°C	-	-1.4	V
Output Current	+l _{OUT}	Note 3	Note 3		+25°C	50	-	mA
				2	+125°C	40	-	mA
				3	-55°C	28	-	mA
	-l _{OUT}	Note 3		1	+25°C	-	-50	mA
				2	+125°C	-	-40	mA
				3	-55°C	-	-28	mA
Quiescent Power	Icc	$R_L = 100\Omega$		1	+25°C	6.6	7.1	mA
Supply Current				2, 3	+125°C, -55°C	6.2	7.5	mA
	I _{EE}	$R_L = 100\Omega$		1	+25°C	-7.1	-6.6	mA
				2, 3	+125°C, -55°C	-7.5	-6.2	mA
Clamp Accuracy	V _H CLMP	$A_{V} = -1, V_{IN}$	$A_V = -1, V_{IN} = -1.6V$		+25°C	-125	125	mV
		V _H = 1V		2, 3	+125°C, -55°C	-125	125	mV
	V _L CLMP	$A_{V} = -1, V_{IN}$	$A_V = -1$, $V_{IN} = +1.6V$		+25°C	-125	125	mV
		V _L = -1V		2, 3	+125°C, -55°C	-125	125	mV
Clamp Input Current	V _H BIAS	V _H = 1V		1	+25°C	-	200	μΑ
				2, 3	+125°C, -55°C	-	200	μΑ
	V _L BIAS	V _L = -1V		1	+25°C	-200	-	μΑ
				2, 3	+125°C, -55°C	-200	-	μΑ

NOTES:

- 1. Output is short circuit protected to ground. Brief short circuits to ground will not degrade reliability, however continuous (100% duty cycle) output current must not exceed 30mA for maximum reliability.
- 2. Guaranteed from +IN Common Mode Rejection Test, by: $+R_{IN} = 1/CMS_{IBP}$.
- 3. Guaranteed from $\rm V_{OUT}$ Test with $\rm R_L$ = $50\Omega,$ by: $\rm I_{OUT}$ = $\rm V_{OUT}/50\Omega.$

Specifications HFA1115/883

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 3 Intentionally Left Blank.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)		
Interim Electrical Parameters (Pre Burn-In)	1		
Final Electrical Test Parameters	1 (Note 1), 2, 3		
Group A Test Requirements	1, 2, 3		
Groups C and D Endpoints	1		

NOTE:

1. PDA applies to Subgroup 1 only.

Die Characteristics

DIE DIMENSIONS:

 $59 \ x \ 58.2 \ x \ 19 \ mils \pm 1 \ mils$ $1500 \ x \ 1480 \ x \ 483 \mu m \pm 25.4 \mu m$

METALLIZATION:

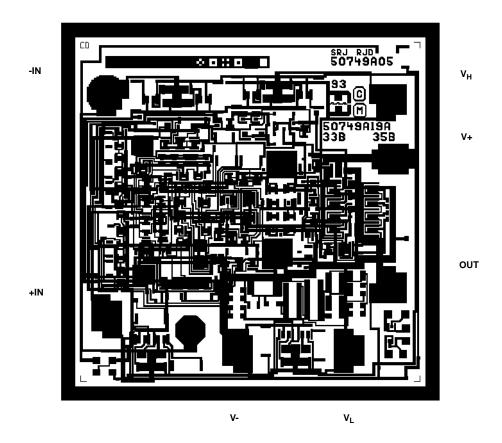
Type: Metal 1: AICu(2%)/TiW Type: Metal 2: AICu(2%)

Thickness: Metal 1: $8k\mathring{A} \pm 0.4k\mathring{A}$ Thickness: Metal 2: $16k\mathring{A} \pm 0.8k\mathring{A}$

GLASSIVATION: Type: Nitride

Thickness: 4kÅ ± 0.5kÅ

WORST CASE CURRENT DENSITY:


TBD

TRANSISTOR COUNT: 89

SUBSTRATE POTENTIAL (Powered Up): Floating (Recommend Connection to V-)

Metallization Mask Layout

HFA1115/883

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com